
Horn antennas 
 
The only practical way to increase the directivity of a waveguide is to flare out its ends into a horn. 
The most common types of horn are:  the H-plane sectoral horn in which the long side of the 
waveguide (the a-side) is flared, the E-plane sectoral horn in which the short side is flared, and the 
pyramidal horn in which both sides are flared. 

  
 
 
The pyramidal horn is the most widely used antenna for feeding large microwave dish antennas and 
for calibrating them. The sectoral horns may be considered as special limits of the pyramidal horn. 
In Figure is shown the geometry in more detail, moreover , the two lower figures are the 
crosssectional views along the xz- and yz-planes. 
 

 
 It follows from the geometry that the various lengths and flare angles are given by: 
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Considering the geometry depicted in figures the the various lengths and flare angles are given by: 
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The quantities RA and RB represent the perpendicular distances from the plane of the waveguide 
opening to the plane of the horn. Therefore, they must be equal, RA = RB.  
Given the horn sides A,B and the common length RA, it is possible to calculate all the relevant 
geometrical quantities required for the construction of the horn.  
The lengths ∆a and ∆b represent the maximum deviation of the radial distance from the plane of the 
horn.  
The expressions are obtained considering an approximation valid when aR Aand  bR B . 

The aperture electric field is assumed to have the following form 
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taking into account the relative phase differences at the point (x, y) on the aperture of the horn 
relative to the center of the aperture. 
We note that at the connecting end of the waveguide the electric field is Ey(x, y)=E0 cos(πx/a) and 
changes gradually into the form of Eq. (1) at the horn end. Because the aperture sides A,B are 
assumed to be large compared to λ, the Huygens source assumption is fairly accurate for the 

tangential aperture magnetic field, y
x
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The quantities k∆a, k∆b are the maximum phase deviations in radians. Therefore, 
∆a/λ and ∆b/λ will be the maximum deviations in cycles. We define: 
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It turns out that the optimum values of these parameters that result into the highest directivity are 
approximately: Sa = 3/8 and Sb = 1/4. We will use these values later in the design of optimum horns. 
For the purpose of deriving convenient expressions for the radiation patterns of the horn, we define 
the related quantities: 
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The near-optimum values of these constants are 4 4(3 / 8) 1.2247a aSσ = = =  and 

4 4(1/ 4) 1b bSσ = = = . These are used very widely, but they are not quite the true optimum 
values, which are σa = 1.2593 and σb = 1.0246. 
 



The design problem for a horn antenna is to determine the sides A,B that will achieve a 
given gain G and will also fit geometrically with a given waveguide of sides a, b, satisfying 
the condition RA = RB. The two design equations for A,B are then 
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The design of the constant aspect ratio case is straightforward. Because σb = rσa, the second condition 
is already satisfied. Then, the first condition can be solved for A, from which one obtains B = rA and 
RA = A(A − a)/(2λσ2

a): 
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where e is the aperture efficiency. 
 


